O uso das unidades de processamento gráfico (GPUs) melhora rapidamente o tempo de processamento dos modelos de aprendizagem automática. O ArcGIS Notebook Server pode aproveitar de GPUs NVIDIA em sua máquina host uma vez que etapas adicionais sejam executadas. O fluxo de trabalho seguinte tem duas metas primárias. A primeira é instalar tempo de execução e drivers NVIDIA, o qual permitirá que o componente Docker do seu site construa contêiners prontos para GPU. A segunda é criar uma cópia do tempo de execução do notebook que é configurado para utilizar o tempo de execução do NVIDIA. Todos os notebooks do ArcGIS Notebooks abertos utilizando este tempo de execução iniciarão em contêiners prontos para GPU. Aparte disso, o novo tempo de execução manterá todas as bibliotecas Python do tempo de execução do notebook.
Após o ArcGIS Notebook Server ter sido instalado e configurado, siga estas etapas. Se seu site do ArcGIS Notebook Server tiver múltiplas máquinas, siga as etapas 1 até 3 em todas as máquinas.
- Instale os drivers NVIDIA apropriados em cada máquina em seu site. Consulte o Guia de instalação do CUDA NVIDIA para Linux para obter informações completas.
- Execute Ações de pós-instalação para configurar o ambiente após instalar o CUDA Toolkit.
- Instale o nvidia-container-toolkit na máquina para que os contêineres do notebook possam aproveitar as GPUs. Consulte o guia de instalação do NVIDIA Container Toollkit para obter os downloads e a documentação referentes ao seu sistema operacional específico.
- Execute o seguinte comando em cada máquina para garantir que seus elementos do NVIDIA sejam instalados corretamente:
sudo docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
- Entre no seu portal do ArcGIS Enterprise como um administrador e abra o ArcGIS Notebook Server Manager.
- Abra a página Configurações , e clique em Tempos de execução.
- Clique no botão Editar para o tempo de execução que você usará como base do tempo de execução habilitado para GPU, no ArcGIS Notebook Python 3 Advanced ou ArcGIS Notebook Python 3 Standard. Copie o valor ID da Imagem. Clique em Cancelar para sair do editor.
- Na página Tempos de Execução, clique em Registrar Tempo de Execução.
- Na página Registrar tempo de execução, forneça um nome apropriado (como GPU Runtime). Para o valor de ID de Imagem adicione o valor que você copiou na etapa 6.
- Configure o valor Tempo de Execução do Docker para nvidia. Clique em Registrar Tempo de Execução para confirmar.
- Verifique se você configurou o ArcGIS Notebook Server com sucesso para utilizar GPUs NVIDIA. Como um membro do portal com o privilégio Criar e editar notebooks ou o privilégio Notebooks avançados, se você escolheu o tempo de execução avançado na etapa 6, crie um notebook em branco. Quando você escolher o tempo de execução do notebook, selecione seu novo tempo de execução pronto para GPU. Copie o seguinte em uma célula do notebook e execute a célula.
A saída retorna como True, pois o pacote torch.cuda requer GPUs para executar.import torch torch.cuda.is_available()
- Execute o comando seguinte em uma nova célula para visualizar a configuração de GPU da sua máquina:
!nvidia-smi
Se você deseja remover a capacidade do seu site para usar GPUs, siga para a seção Tempos de Execução na guia Configurações no ArcGIS Notebook Server Manager e exclua o tempo de execução que você criou neste fluxo de trabalho.