Skip To Content

Найти горячие точки

Найти горячие точки Инструмент Найти горячие точки определяет наличие статистически значимой кластеризации в пространственном распределении данных.

Схема рабочего процесса

Схема рабочего процесса инструмента Найти горячие точки

Анализ с помощью Геоаналитика

Анализ, использующий Геоаналитика, выполняется с помощью технологии распределенной обработки на нескольких компьютерах и ядрах ArcGIS GeoAnalytics Server. Геоаналитика и стандартные инструменты анализа объектов в ArcGIS Enterprise имеют разные параметры и возможности. Более подробно об этих различиях см. в разделе Различия между инструментами анализа объектов.

Примеры

  • Полицейское управление проводит анализ, чтобы определить, имеется ли связь между насильственными преступлениями и уровнем безработицы. В учебных заведениях в районах с высоким уровнем насильственных преступлений и высокой безработицей будет применена программа обеспечения занятости в летние каникулы. Найти горячие точки будет использоваться для определения районов со статистически значимыми горячими точками по уровням преступности и безработицы.

  • Сотрудник службы охраны окружающей среды изучает заболевания деревьев, чтобы определить области, где требуется обработка, и более подробно рассмотреть области, где имеется устойчивость. Инструмент Найти горячие точки может быть использован для поиска кластеров заболеваний (горячие точки) и здоровых кластеров (холодные точки).

Примечания по использованию

Входные объекты должны быть точками. Точки анализируются путём агрегирования пространственных объектов в пределах квадратной сетки (бинов).

В выходном слое появятся дополнительные поля, содержащие такую информацию, как статистическая значимость каждого объекта, p-значение и z-оценка.

Найти горячие точки позволяет выполнять анализ, используя временные шаги. Каждый временной шаг анализируется независимо от объектов вне этого шага. Чтобы использовать временной шаг, входные данные должны содержать информацию о времени и представлять момент времени. Когда применяются временные шаги, выходными объектами выступают интервалы времени, представленные полями START_DATETIME и END_DATETIME.

Для инструмента Найти горячие точки необходимо, чтобы полигональный слой был в системе координат проекции. Если данные не используют систему координат проекции и вы не задали систему координат проекции для обработки, используется World Cylindrical Equal Area (WKID 54034).

Если опция Использовать текущий экстент карты включена, будут анализироваться только те объекты, которые отображаются в текущем экстенте. Если опция отключена, анализ будет выполнен для всех входных объектов входного слоя, даже если они находятся вне текущего экстента карты.

Как работает инструмент Найти горячие точки

Даже в случайном пространственном распределении имеется доля кластеризации. Кроме того, мы часто хотим увидеть закономерности там, где они отсутствуют. Соответственно, довольно сложно определить, являются ли закономерности результатом реальных пространственных процессов или просто случайны. Вот почему исследователи и аналитики используют статистические методы, такие как Найти горячие точки (Getis-Ord Gi*) для количественного представления пространственных закономерностей.

Инструмент рассчитывает статистический показатель Getis-Ord Gi* для каждого объекта в наборе данных. Итоговые z-оценки и p-значения говорят вам о том, в какой области пространства кластеризуются объекты с высокими или низкими значениями. Каждый объект анализируется в контексте соседних объектов. Объект с высоким значением интересен, но, возможно, не является статистически существенной горячей точкой. Чтобы быть статистически существенной горячей точкой, объект должен иметь высокое значение и быть окружён другими объектами с высокими значениями. Локальная сумма для объекта и его соседей сравнивается пропорционально с суммой всех объектов; когда локальная сумма очень отличается от ожидаемой локальной суммы, и когда это отличие является слишком большим, чтобы быть результатом случайного процесса, получается статистически значимая z-оценка.

Когда вы находите статистически значимую кластеризацию в данных, вы получаете ценную информацию. Понимание того, где и когда происходит кластеризация, является ключом к процессам, приводящим к появлению закономерностей. Например, понимание того, что уровень квартирных краж особенно высок в определённых районах, является жизненно необходимой информацией для разработки эффективной стратегии по их предотвращению, наращивания ресурсов полиции, ввода программ соседского дозора, начала углублённых расследований и определения потенциальных подозреваемых.

Анализ точечных объектов

С помощью точечных объектов могут быть представлены различные данные. С помощью точек часто отображают места преступлений, школы, больницы, места экстренных вызовов, ДТП, скважины, деревья, суда и т.д. Иногда вам может понадобиться анализ значений данных (поле), связанных с каждым точечным объектом. В других случаях вы можете захотеть лишь осуществить кластеризацию точек. Решение вопроса о том, добавлять ли поле или нет, зависит от исследуемой вами задачи.

Поиск кластеров с высоким и низким значением числа точек

Точки анализа, без поля Для некоторых точечных данных – обычно в случаях, когда точками показаны события, происшествия или наличие/отсутствие чего-либо – поле анализа необязательно использовать. В таких случаях вам, как правило, нужно знать места, где кластеризация экстремально интенсивная, а где выражена слабо. При осуществлении подобного анализа площадные объекты (созданная инструментом сетка) помещается над точками, а затем вычисляется число точек, попадающих на каждый площадной объект. Инструмент, который находит кластеры с высоким и низким числом точек, связанные с каждым площадным объектом.

Интерпретация результатов

Выходными данными работы инструмента Найти горячие точки является карта. Для точек или областей в итоговом слое карты характерна закономерность: чем темнее красный или синий цвета, тем больше вы можете быть уверены, что кластеризация не носит случайный характер. Точки или области отображаемые бежевым, с другой стороны, не являются частью статистически значимого кластера; пространственная закономерность, связанная с этими объектами, скорее всего случайна. Иногда в результате анализа оказывается, что статистически значимых кластеров нет. Это очень важная информация.

Случайное пространственное распределение не даёт возможности судить о причинах такого распределения. В этих случаях все объекты на итоговом слое будут отображаться бежевым цветом. Но когда вы не находите статистически значимой кластеризации, местоположения, где имеет место кластеризация, могут, тем не менее, подсказать нам, что может быть причиной кластеризации. Нахождение статистически значимых мест пространственной кластеризации случаев раковых заболеваний, связанных с местами скопления токсичных веществ, должно привести к проведению соответствующей политики, направленной на защиту здоровья населения. Аналогично, выявление на карте холодных участков показателей детского ожирения, связанных со школьными внеклассными спортивными программами, должно привести к более широкому внедрению соответствующих программ в школах.

Ограничения

Входные данные должны включать точечный слой и должны быть агрегированы по ячейкам указанного размера до того, как приступить к анализу. Чтобы найти горячие точки без агрегирования, или если входными данными является полигональный слой, используйте стандартный инструмент анализа пространственных объектов Найти горячие точки.

Пример ArcGIS API for Python

Инструмент Найти горячие точки доступен в ArcGIS API for Python.

В этом примере выполняется поиск горячих точек преступлений, когда совершенное преступление относится к местным.


# Import the required ArcGIS API for Python modules import arcgis from arcgis.gis import GIS from arcgis.geoanalytics import analyze_patterns
# Connect to your ArcGIS Enterprise portal and check that GeoAnalytics is supported portal = GIS("https://myportal.domain.com/portal", "gis_publisher", "my_password", verify_cert=False) if not portal.geoanalytics.is_supported():
    print("Quitting, GeoAnalytics is not supported")    exit(1)   
# Find the big data file share dataset you're interested in using for analysis search_result = portal.content.search("", "Big Data File Share")
# Look through search results for a big data file share with the matching name bd_file = next(x for x in search_result if x.title == "bigDataFileShares_PoliceData")
# Look through the big data file share for Crimes crimes = next(x for x in bd_file.layers if x.properties.name == "Crimes")
# Set the tool environment settings and apply a filter to crimes arcgis.env.verbose = True crimes.filter = "Domestic = 'TRUE'"
# Find hot spot of domestic crime occurrence with hot spot cell size of 1 mile hot_spots_result = analyze_patterns.find_hot_spots(point_layer = crimes,                                                   bin_size = 1,                                                    bin_size_unit = 'Miles',
                                                   neighborhood_distance = 5,                                                   neighborhood_distance_unit = 'Miles',                                                   output_name = "Crimes_Hotspots")
# Visualize the tool results if you are running Python in a Jupyter Notebook processed_map = portal.map('City, State', 10) processed_map.add_layer(hot_spots_result) processed_map

Похожие инструменты

Используйте инструмент Найти горячие точки для определения наличия статистически значимой кластеризации в пространственном распределении данных. Другие полезные инструменты описаны ниже:

Инструменты анализа Map Viewer

Если вы хотите найти горячие точки в областях при помощи стандартных инструментов анализа, см. Найти горячие точки.

Если вас интересует поиск выбросов в пространственном распределении данных, используйте стандартный инструмент Поиск выбросов.

Если вас интересует создание карты плотности точечных или линейных объектов, используйте инструмент Геоаналитика Вычисление плотности или стандартный инструмент Вычисление плотности.

Инструменты анализа ArcGIS Desktop

Инструмент Геоаналитика Найти горячие точки доступен в ArcGIS Pro.

Найти горячие точки использует такую же статистику, как при работе инструментов Анализ горячих точек (Getis-Ord Gi*) и Оптимизированный анализ горячих точек.