Skip To Content

使用包含检测事件的 Arcade 表达式

GeoAnalytics Tools 工具箱中提供多个工具以应用表达式。

使用表达式的 GeoAnalytics Tools 具有不同的用途,并且会限制表达式的应用对象。 在 11.1 中,ArcGIS GeoAnalytics Server 中使用的所有表达式都支持 Arcade

了解有关 Arcade 函数的详细信息

检测事件中的表达式

将表达式用于检测事件工具以指定事件开始和结束的条件。 检测事件条件必须始终生成 truefalse 结果。 使用条件来检查要素是否应该包含在事件中。 将测试每个要素的条件,以确定哪些要素为事件。 在 ArcGIS GeoAnalytics Server 上运行分析时会执行计算。 可以使用的表达式示例包含在以下部分中。

数学运算符和函数示例

表达式能够利用数学方式处理数字。 下表显示了可用运算的示例。

了解有关 Arcade 中可用数学运算和函数的详细信息

运算符说明示例结果

a + b

a 加 b。

fieldname 包含数值 1.5。

$feature["fieldname"] + 2.5

4.0

a - b

a 减 b。

fieldname 包含数值 3.3。

$feature["fieldname"]- 2.2

1.1

a * b

a 乘以 b。

fieldname 包含数值 2.0。

$feature["fieldname"] * 2.2

4.4

a / b

a 除以 b。

fieldname 包含数值 4.0。

$feature["fieldname"] / 1.25

3.2

abs( a )

返回 a 的绝对(正)值。

fieldname 包含数值 -1.5。

abs($feature["fieldname"])

1.5

log( a )

返回 a 的自然对数(以 E 为底)。

fieldname 包含数值 1。

log($feature["fieldname"])

0

sin( a )

返回 a 的三角正弦值。 假设输入为以弧度为单位的角。

fieldname 包含数值 1.5707。

sin($feature["fieldname"])

1

cos( a )

返回 a 的三角余弦值。 假设输入为以弧度为单位的角。

fieldname 包含数值 0。

cos($feature["fieldname"])

1

tan( a )

返回 a 的正切值。 假设输入为以弧度为单位的角。

fieldname 包含数值 0。

tan($feature["fieldname"])

0

sqrt( a )

返回 a 的平方根。

fieldname 包含数值 9。

sqrt($feature["fieldname"])

3

min( a, b )

返回 a 和 b 间的最小数值。

fieldname 包含数值 1.5 和数值 -3。

min($feature["fieldname"], -3)

-3

max( a, b )

返回 a 或 b 间的最大数值。

fieldname1 包含数值 1.5,fieldname2 包含数值 -3。

max($feature["fieldname1"], $feature["fieldname2"])

1.5

constrain(<value>,<low>,<high>)

如果结果在限制范围内,则返回输入值。 如果输入值小于低值,则返回低值。 如果输入值大于高值,则返回高值。

constrain($feature["distance"], 0, 10)

constrain($feature['Store dist'], 6, distance)

如果 distance 小于 0,则返回 0,如果 distance 大于 10,则返回 10,其余情况下返回 distance

如果 Store dist 小于 6,则返回 6,如果 Store dist 大于 distance,则返回 distance,其余情况下返回 Store dist

用于检测事件的条件的乘法示例。

$feature["Distance"] * 2 > 50

文本函数示例

检测事件表达式可以处理文本。 下表显示了可用运算的示例。

了解有关 Arcade 中可用文本函数的详细信息

运算符说明示例结果

concatenate( <values>, <separator>)

将值连接在一起,然后返回字符串。

  • values - 要串连的字符串值数组。
  • separator(可选)- 如果 values 参数为数组,则为用于连接的分隔符;如果为第一个参数提供单个值,则为要连接的字符串。 如果未提供,则为空。

fieldname 包含数值 GeoAnalytics

Concatenate ([$features["fieldname"], "is", "great!"], ' ')

GeoAnalytics is great!

find(<searchText>, <text>, <startPos>)

查找字符串中的字符串。 不支持通配符。

  • searchText - 要搜索的子字符串。
  • text - 要搜索的文本。
  • startPos(可选)- 要在其中进行搜索的字符串中基于零的位置索引。

fieldname1 包含数值 14NorthStreetfieldname2 包含数值 North

find($feature["fieldname2"], $feature["fieldname1"])

2

lower(<value>)

使字符串均为小写字母。

  • value - 要变为小写字母的字符串。

fieldname 包含数值 GEOANALYTICS

lower($feature["fieldname"])

geoanalytics

使用 findlower 的文本示例。

find(("north"), lower("146NorthStreet")) == 2

日期函数示例

可以使用日期表达式中的检测事件。 下表显示了可用运算的示例。

了解有关 Arcade 中可用日期函数的详细信息

Arcade 中,月份值范围从 0(1 月)到 11(12 月)、日期从 1 到 31、小时从 0(上午 12:00)到 23(下午 11:00)、分和秒从 0 到 59 以及毫秒从 0 到 999。Arcade 日期函数返回您的 GeoAnalytics Server 所在位置处的时间值。

运算符说明示例结果

date( <value>, <month>, <day>, <hour>, <minute>)

将值或值集解析成日期字符串。

  • value(可选)- 自 1970 年 1 月 1 日 (UTC) 以来的毫秒数。还可以是代表年的数字。 如果指定了某一年,则也必须在后续参数中提供月和日。 该值可以是日期字符串或者是待转换成日期的 ISO 8601 字符串。
  • month(可选)- 月份 (0-11),其中 0 是一月,11 是十二月。
  • day(可选)- 一月中的某天 (1-31)。
  • hour(可选)- 一天中的某小时 (0-23)。
  • minute(可选)- 一小时中的某分钟 (0-59)。
  • second(可选)- 一分钟中的某秒 (0-59)。
  • millisecond(可选)- 一秒中的某毫秒 (0-999)。

fieldname 包含数值 1476987783555

示例 1:Date($features["fieldname"])

示例 2:Date(2017,0,14,0)

示例 3:Date()

示例 1:20 Oct 2016 11:23:03 am

示例 2:14 Jan 2017 12:00:00 am

示例 3:返回当前时间

DateDiff(<date1>, <date2>, <units>)

将两个日期相减,并以指定的单位返回差值。

  • date1 - 从中减去第二个日期的日期值。
  • date2 - 要从第一个给定日期中减去的日期值。
  • startpos(可选)- 返回两个给定日期差值的单位。 受支持的单位类型包括 millisecondssecondsminuteshoursdaysmonthsyears。 默认值为毫秒。

示例 1:DateDiff(Date(2017,1,14,0), Date())

示例 2:DateDiff(Date(2017,1,14,0), Date(), "Years")

产生的结果会随运行此命令的时间而变化。

示例 1:-20532129137

示例 2:-0.6546783768647119

Year(<dateValue>)

返回给定日期中的年份。

  • value - 从中获取年份的日期值。

示例 1:fieldname 是一个值为 09 Oct 2017 04:30:43 pmDate 类型的字段。

Year($feature["fieldname"])

示例 2:fieldname 是一个值为 2012-09-27 的 ISO 8601 字符串格式的字符串字段。

示例 1:2017

示例 2:2012

条件运算符

条件语句可使用以下运算符:

运算符说明示例结果

a > b

a < b

a 大于 b

a 小于 b

10 > 2

False

a >= b

a <= b

a 大于或等于 b

a 小于或等于 b

abs(-10) >= 10

True

a != b

a 不等于 b

abs(-3) != -3

True

a == b

a 等于 b

abs(-5) == 5

True

<condition1> || <condition2>

满足条件 1 或条件 2。

(abs(-5) == 5) || (10 < 2)

True

<condition1> && <condition2>

满足条件 1 和条件 2。

(abs(-5) == 5) && (10 < 2)

False

逻辑运算符示例

除了条件运算符之外,还可以将更高级的逻辑运算符与检测事件配合使用。

了解有关 Arcade 中可用逻辑函数的详细信息

函数说明示例结果

iif(<condition>,<true value>,<false value>)

如果条件的求值结果是 true,则返回一个值,如果条件的求值结果是 false,则返回其他值。

<true value><false value> 可为以下内容:

  • 数值字段。 如果字段名称中含有空格,请使用方括号。
  • 数值。
  • 函数。

iif($feature["field1"] > $feature["field2"], $feature["field1"], 0)

iif($feature["field1"] > $feature["field2"], iif($feature["field2"] = 0, $feature["field3"], $feature["field4"]), 0)

如果 field1 大于 field2,则返回 field1,其余情况下返回 0

如果 field1 大于 field2,则返回第二个 iif 函数的结果,其余情况下返回 0

when(<expression1> , <result1> , <expression2> , <result2> , ... , <expressionN> , <resultN>, <default>)

依次评估一系列表达式,直至一个表达式评估为 true

  • expression - 表达式。
  • result - 可以为数值或字段。
  • default - 表达式均不匹配时的可选值。

when(($feature["field1"] + 10) > 1, 1,($feature["field2"] + 10) > 2 , 2, $feature["field3"])

如果 field1 + 10 大于 1,则返回 1。 否则,检查 field2 + 10 是否大于 2。 如果大于 2,则返回 2。 否则,返回 field3

decode(<conditional val> , <case1> , <result1>, <case2>, <result2>, ... <caseN>, <resultN>, <defaultValue> )

decode 函数将对表达式进行评估,并将其值与后续参数进行比较。 如果表达式匹配,则返回下一个参数值。 如果均不匹配,则可以选择将最后一个参数作为默认返回值。

  • conditional val - 可以为字段或表达式。
  • case - 要与 conditional val 进行对比的值。
  • result - 相应实例与 conditional val 匹配时的结果。
  • defaultValue - 其他值均不是 true 时的可选值。

decode($feature["field1"] + 3 , $feature["field1"], 1, $feature["field2"], 2, 0)

比较 conditional val field1 + 3 和 case1 field1 是否相等。 如果 true,则返回 1。 如果 false,则比较 field1 + 3field2 是否相等。 如果 true,则返回 2;否则,返回 0。

跟踪感知型示例

此外,一些 GeoAnalytics Tools(例如“检测事件”和“计算字段”)也可以使用 Arcade 形式的跟踪感知型方程。

函数说明示例结果

TrackStartTime()

计算轨迹的起始时间,以从新纪元开始的微秒为单位。

使用 2017 年 1 月 2 日起始的轨迹。

TrackStartTime()

1483315200000

TrackDuration()

计算轨迹从起始到当前时间步长的持续时间,以微秒为单位。

使用 2017 年 1 月 2 日起始、当前时间为 2017 年 1 月 4 日的轨迹。

TrackDuration()

172800000

TrackCurrentTime()

计算轨迹的当前时间。

使用发生于 2017 年 1 月 3 日 9:00 a.m 的要素。

TrackCurrentTime()

1483434000000

TrackIndex

返回正在计算的要素的时间索引。

根据轨迹中的第一个要素计算此值。

TrackIndex

0

TrackFieldWindow(<fieldName>, <startIndex>, <endIndex>)

在指定字段中返回指定时间索引的值数组。 window 函数可用于使时间前进和后退。 将在轨迹中的每个要素处评估该表达式。

  • 当前要素位于索引 0 处。
  • 正值表示当前值之后、在未来发生的要素。 例如,位置 1 是数组中的下一个值。
  • 负数表示上一要素之前、在过去发生的要素。 例如,-1 是数组中的上一个值。

MyField 具有按顺序排列的值 [10, 20, 30, 40, 50]。 将在轨迹中的每个要素处评估该表达式。 返回的结果包括起点要素,但不包括终点要素。

示例 1:TrackFieldWindow("MyField,-1,2)

示例 2:TrackFieldWindow("MyField,-2,0)[0]

示例 3:TrackFieldWindow("MyField,0,3)[2]

示例 1:在每个要素处进行评估时,该表显示以下结果:

评估要素

结果

10

[10,20]

20

[10, 20, 30]

30

[20,30,40]

40

[30,40,50]

50

[40, 50]

示例 2:在索引 2(值为 30)处进行评估时,将返回 10

示例 3:在索引 2(值为 30)处进行评估时,将返回 50

TrackGeometryWindow(<startIndex>, <endIndex>)

返回表示指定时间索引的几何的值数组。 window 函数可用于使时间前进和后退。 将在轨迹中的每个要素处评估该表达式。

  • 当前要素位于索引 0 处。
  • 正值表示当前值之后、在未来发生的要素。 例如,位置 1 是数组中的下一个值。
  • 负数表示上一要素之前、在过去发生的要素。 例如,-1 是数组中的上一个值。

MyField 具有按顺序排列的值 [10, 20, 30, 40, 50]。 要素的几何为 [{x: 1, y: 1},{x: 2, y: 2} ,{x: null, y: null},{x: 4, y: 4}, {x: 5, y: 5}]。 将在轨迹中的每个要素处评估该表达式。 返回的结果包括起点要素,但不包括终点要素。

示例 1:TrackGeometryWindow(-1,2)

示例 2:折线数据集上的 TrackGeometryWindow(0,1)[0]

示例 3:面数据集上的 TrackGeometryWindow(0,1)[0]

示例 4:查找上一个点的 X 值 TrackGeometryWindow(-1,0)[0]["x"]

示例 1:在每个要素处进行评估时,该表显示以下结果:

评估要素

结果

10

[{x: 1, y: 1},{x: 2, y: 2}]

20

[{x: 1, y: 1},{x: 2, y: 2} ,{x: null, y: null}]

30

[{x: 2, y: 2} ,{x: null, y: null},{x: 4, y: 4}]

40

[{x: null, y: null},{x: 4, y: 4}, {x: 5, y: 5}]

50

[{x: 4, y: 4}, {x: 5, y: 5}]

示例 2:将通过以下格式返回折线: [{"paths":[[[-180,-22.88],[-177.6,-23.6]],[[180,-18.099999999999994],[179.7,-18.4],[179.4,-18.7],[178.9,-18.9],[178.5,-19.3],[178.2,-19.7],[178.4,-20],[178.8,-20.2],[178.9,-21.8],[179,-22.2],[179.4,-22.7],[180,-22.88]],[[-178,-17],[-178.8,-17.3],[-179.2,-17.5],[-179.6,-17.8],[-179.9,-18],[-180,-18.099999999999994]]]}]

示例 3:将通过以下格式返回面:[{"rings":[[[-7882559.1197999995,6376090.883500002],[-7893142.474300001,6042715.216800004],[-8544018.775999999,6045361.0554000065],[-8544018.775999999,6376090.883500002],[-7882559.1197999995,6376090.883500002]]]}]

示例 4:在索引 2(值为 30)处评估:2

TrackWindow(<value1>, <value2>)

返回表示指定时间索引的几何和所有属性的值数组。 window 函数可用于使时间前进和后退。

  • 当前要素位于索引 0 处。
  • 正值表示当前值之后、在未来发生的要素。 例如,位置 1 是数组中的下一个值。
  • 负数表示上一要素之前、在过去发生的要素。 例如,-1 是数组中的上一个值。

MyField 除了 objectIDglobalIDinstant_datetime 字段之外,还具有按顺序排列的值 [10, 20, 30, 40, 50]。 要素的几何为 [{x: 1, y: 1},{x: 2, y: 2} ,{x: null, y: null},{x: 4, y: 4}, {x: 5, y: 5}]。 将在轨迹中的每个要素处评估该表达式。 返回的结果包括起点要素,但不包括终点要素。

示例 1:TrackWindow(-1,0)[0]

示例 2:geometry(TrackWindow(-1,0)[0]["x"]

示例 1:在每个要素处进行评估时,该表显示以下结果:

评估要素

结果

10

20

[{"geometry": {x: 1, y: 1}},{"attributes": {"MyField" : 10, "trackName":"ExampleTrack1"}}]

30

[{"geometry": {x: 2, y: 2}},{"attributes": {"MyField" : 20, "trackName":"ExampleTrack1"}}]

40

[{"geometry": {x: null, y: null}},{"attributes": {"MyField" : 30, "trackName":"ExampleTrack1"}}]

50

[{"geometry": {x: 4, y: 4}},{"attributes": {"MyField" : 40, "trackName":"ExampleTrack1"}}]

示例 2:在索引 2(值为 30)处评估:2

使用以下追踪表达式可以计算轨迹上的距离、速度和加速度。

所有距离计算均以米为单位,速度计算以米/秒为单位,加速度计算以米/秒的平方为单位。 使用测地线距离测量距离。

函数说明

TrackCurrentDistance()

从第一个观测点到当前观测点的观测点之间的距离总和。

TrackDistanceAt(value)

从第一个观测点到当前观测点的观测点之间的距离总和加上给定值。

TrackDistanceWindow(value1, value2)

关于当前观测点 (0) 的窗口中的第一个值(包括)到最后一个值(不包括)之间的距离。

TrackCurrentSpeed()

之前的观测点与当前观测点之间的速度。

TrackSpeedAt(value1)

相对于当前观测点的观测点速度。 例如,在值 2 处,这是当前观测点之后两个观测点处的观测点速度。

TrackSpeedWindow(value1, value2)

围绕当前观测点 (0) 的窗口中的第一个值(包括)和最后一个值(不包括)之间的速度值。

TrackCurrentAcceleration()

之前的观测点与当前观测点之间的加速度。

TrackAccelerationAt(value1)

相对于当前观测点的观测点加速度。

TrackAccelerationWindow(value1, value2)

围绕当前观测点 (0) 的窗口中的第一个值(包括)到最后一个值(不包括)之间的加速度值。

距离、速度和加速度的示例计算将使用以下图像中的示例:

追踪具有六个点的示例图像

函数示例结果

TrackCurrentDistance()

点 ID结果(米)

P1

0

P2

60

P3

80 + 60 = 140

P4

30 + 80 + 60 = 170

P5

35 + 30 + 80 + 60 = 205

P6

25 + 35 + 30 + 80 + 60 = 230

TrackDistanceAt(2)

点 ID结果(米)

P1

0 + 80 + 60 = 140

P2

30 + 80 + 60 = 170

P3

35 + 30 + 80 + 60 = 205

P4

25 + 35 + 30 + 80 + 60 = 230

P5

P6

TrackDistanceWindow(-1, 2)

点 ID结果(米)

P1

[0,60]

P2

[0, 60, 140]

P3

[60, 140, 170]

P4

[140, 170, 205]

P5

[170, 205, 230]

P6

[205, 230]

TrackCurrentSpeed()

点 ID结果(米/秒)

P1

0

P2

60/60

1

P3

80/60

1.33

P4

30/60

.5

P5

35/60

0.5833

P6

25/60

0.4167

TrackSpeedAt(2)

点 ID结果(米/秒)

P1

80/60

1.33

P2

30/60

.5

P3

35/60

0.5833

P4

25/60

0.4167

P5

P6

TrackSpeedWindow(-1, 2)

点 ID结果(米/秒)

P1

[0, 1]

P2

[0, 1, 1.3]

P3

[1, 1.3, 0.5]

P4

[1.3, 0.5, 0.583]

P5

[0.5, 0.583, -0.4167]

P6

[0.583, -0.4167]

TrackCurrentAcceleration()

点 ID结果(米/秒²)

P1

0

P2

0.0167

P3

0.0056

P4

-0.0014

P5

0.0014

P6

-0.0028

TrackAccelerationAt(2)

点 ID结果(米/秒²)

P1

0.0056

P2

-0.0014

P3

0.0014

P4

-0.0028

P5

P6

TrackAccelerationWindow(-1, 2)

点 ID结果(米/秒²)

P1

[0, 0.0167]

P2

[0, 0.0167, 0.0056 ]

P3

[0.0167, 0.0056 , -0.0014]

P4

[ 0.0056 , -0.0014, 0.0014]

P5

[-0.0014, 0.0014, -0.0028]

P6

[0.0014, -0.0028]