تقوم أداة العثور على النقاط الفعالة بتحديد إذا كان هناك أي تجمع هام إحصائي في النمط المكاني لبياناتك.
مخطط سير العمل
أمثلة
قسم الشرطة الخاص بالمدينة يجري تحليلا لتحديد ما إذا كانت هناك علاقة بين جرائم العنف ومعدلات البطالة. وسيتم تنفيذ برنامج العمل في الصيف للمدارس الثانوية في المناطق التي يوجد فيها جرائم العنف العالية وارتفاع معدلات البطالة. سيتم استخدامالعثور على النقاط الفعالة للعثور على المناطق التي تحتوي على نقاط فعالة بالجرائم والبطالة ذات الأهمية الإحصائية.
خبير استراتيجي سياسي يريد أن يعرف المناطق التي تُظهر نقاط الدعم الأقوى أو الأضعف لحزب سياسي معين في الانتخابات الأخيرة. يمكن أن تساعد هذه المعلومات في توجيه استراتيجيات الحملات لانتخابات مستقبلية. يستنتج الاستراتيجي جزء أصوات الحزب الديمقراطي من جزء أصوات الحزب الجمهوري، ومن ثمّ يستخدم العثور على النقاط الفعالة للعثور على النقاط الفعالة والباردة في الاختلافات. النقاط الفعالة (باللون الأحمر) تدل على الدعم الجمهوري القوي بينما النقاط الضعيفة (باللون الأزرق) تدل على الدعم الديمقراطي القوي.
يقوم موظف الحفاظ على البيئة بدراسة الأمراض في الأشجار من أجل تحديد أولويات مناطق الغابات التي ينبغي أن تتلقى العلاج ومعرفة المزيد عن المناطق التي تظهر بعض المقاومة. يمكن استخدام أداة العثور على النقاط الفعالة للعثور على تجمعات الأشجار المريضة (النقاط الفعالة) والصحية (النقاط الضعيفة).
ملاحظات الاستخدام
قد تكون معالم الإدخال نقاط أو مناطق.
يتم استخدام معلمة العثور على التجمعات العالية والمنخفضة لتقييم الترتيب المكاني للمعالم الخاصة بك. إذا كانت المعالم عبارة عن مناطق، عندئذِ يجب اختيار حقل. سيتم تحديد التجميع باستخدام الأرقام في الحقل المحدد. يمكن تحليل المعالم النقطية باستخدام حقل أو الخيار Point Counts. إذا تم استخدام Point Counts ، ستقوم الأداة بتحديد إذا تم تجميع النقاط ذاتها خلاف تجمعات قيم الحقل المرتفعة والمنخفضة.
إذا تم تحليل النقاط باستخدام Point Counts، سوف يتوفر خيارين جديدين. تتيح المعلمة عدّ النقاط داخل بتجميع النقاط داخل Fishnet Grid, Hexagon Grid، أو طبقة المنطقة من المحتويات، مثل المقاطعات أو الرموز البريدية. يتم استخدام المعلمة تعريف النقاط المحتملة لإنشاء منطقة أو العديد من مناطق الاهتمام. الخيارات الثلاثة لهذه المعلمة هي None، مما يعني أنه يتم استخدام جميع النقاط، ومنطقة يتم تعريفها بواسطة طبقة منقطة من المحتويات، ومناطق يتم إنشائها باستخدام أدوات رسم.
يمكن تسوية البيانات باستخدام معلمة القسمة على. بيانات Esri Population تستخدم GeoEnrichment وتتطلب اعتمادات. يتوفر خيار أخر للتسوية باستخدام حقل من طبقة الإدخال. تشمل بعض القيم المحتملة التي يمكن استخدامها للتسوية عدد الأسر أو المنطقة.
يمكن استخدام خيارات لتعيين حجم خلية محدد أو نطاقة مسافة للتحليل الخاص بك.
سوف تحتوي طبقة المخرجات على مزيد من الحقول التي تتضمن معلومات مثل الأهمية الإحصائية لكل معلم، والقيمة P وعدد نقاط Z. تحتوي طبقة المخرجات أيضًا على معلومات حول التحليل الإحصائي في قسم الوصف من تفاصيل العنصر.
كيفية عمل أداة العثور على النقاط الفعالة
حتى الأنماط المكانية العشوائية تعرض بعض نتائج التجميع. بالإضافة إلى ذلك، تحاول الأعين وكذلك التفكير في البحث عن الأنماط حتى في حالة عدم وجودها. بناءًا على ذلك، يمكن أن يكون من الصعب معرفة ما إذا كانت الأنماط في البيانات نتيجة للعمليات المكانية الواقعية في العمل أم مجرد نتيجة لفرصة عشوائية فقط. هذا هو سبب استخدام الباحثين والمحللين الوسائل الإحصائية مثل العثور على النقاط الفعالة (Getis-Ord Gi*) لتحديد الأنماط المكانية.
تحتسب الأداة إحصائية Getis-Ord Gi* (التي تنطق G-i-star) لكل معلم في مجموعة البيانات. عدد نقاط القيمة z وقيم p للمطعم تخبرك بوجود المعالم ذات مجموعة القيم المرتفعة والمنخفضة مكانيًا. يتم تحليل كل معلم ضمن سياق المعالم المجاورة. قد لا يكون المعلم ذات القيمة المرتفعة مثير للاهتمام لكن قد لا يكون نقطة فعالة هامة إحصائيًا. لتكون نقطة فعالة هامة إحصائيًا، سوف يحتوي المعلم على قيمة مرتفعة وتُحاط بمعالم أخرى مع قيم مرتفعة أيضًا. يتم مقارنة المجموع المحلي للمعلم والمعالم المجاورة نسبيًا بمجموع كافة المعالم؛ عندما يكون المجموع المحلي مختلف جدًا عن المجموع المحلي المتوقع، وعندما يكون هذا الاختلاف كبيرًا جدًا ليكون مصادفة عشوائية، نتائج عدد نقاط z هامة إحصائيًا.
عند البحث عن التجمع الإحصائي في البيانات، تحصل على المعلومات ذات القيمة. معرفة أين ومتى يحدث التجمع يمكن أن يوفر الأدلة الفعالة والمتعلقة بالعمليات التي تحسن الأنماط التي تراها. يُعد العلم بأن حوداث السطو على المنازل، على سبيل المثال، تحدث بمعدل أكبر بشكل منتظم في أحياء محددة ضروريًا عند الرغبة في تصميم استرتيجيات فعالة لمنع حدوثها أو تخصيص الموارد غير الكافية للشرطة أو إطلاق برامج لمراقبة الأحياء أو إنشاء تحقيقات مُفصلة للجرائم أو تحديد الشكوك المحتملة.
تحليل معالم المنطقة
تتوفر الكثير من البيانات في معالم المنطقة، مثل مناطق الإحصاء السكاني والمقاطعات وأحياء الناخبين ومناطق المستشفيات وقطع الأرض وحدود المتنزهات والأماكن الترفيهية ومستجمعات الأمطار وتصنيفات تغطية الأرض ومناطق الطقس. عندما تتضمن طبقة التحليل معالم المنطقة، ستحتاج إلى تحديد حقل رقمي يتم استخدامه لإيجاد تجمعات القيم المرتفعة والمنخفضة. يُمكن أن يمثل هذا الحقل ما يلي:
- الأعداد (مثل عدد أفراد الأُسَر)
- المعدلات (مثل السكان الحاملين لدرجة جامعية)
- المتوسط (مثل متوسط دخل الأسرة)
- المؤشرات (مثل عدد النقاط الذي يشير إلى ما إذا كان مستوى إنفاق الأسرة على البضائع الرياضية فوق أو تحت المُعدل الطبيعي)
باستخدام الحقل الذي توفره، تقوم أداة العثور على النقاط الفعالة بإنشاء خريطة (الطبقة الناتجة) التي تعرض المناطق ذات التجمعات الإحصائية للقيم المرتفعة (النقاط الفعالة: حمراء اللون) والقيم المنخفضة (النقاط الباردة: زرقاء اللون).
تحليل المعالم النقطية
تتوفر مجموعة متنوعة من البيانات كمعالم نقطية. يتم تمثيل نماذج المعالم في الأغلب بنقاط تشمل حوادث الجريمة والمدارس والمستشفيات وأحداث مكالمات الطوارئ وحوادث المرور وآبار المياه والأشجار والقوارب. قد تتجه أحيانًا إلى تحليل قيم البيانات (حقل) مقترن بجميع المعالم النقطية. في الحالات الأخرى، لن تهتم إلا بتقييم تجميع النقاط نفسها. يستند قرار توفير حقل من عدمه إلى السؤال الذي تطرحه.
العثور على تجمعات القيم المرتفعة والمنخفضة المقترنة مع المعالم النقطية
سوف ترغب في توفير حقل التحليل للإجابة على أسئلة مثل: أين تتجمع القيم المرتفعة والمنخفضة؟ قد يُمثل الحقل الذي تحدده بعضًا مما يلي:
- الأعداد (مثل عدد حوادث المرور في تقاطعات الشوارع)
- المعدلات (مثل البطالة في المدينة، حيث يتم تمثيل كل مدينة بمعلم نقطي)
- المتوسط (مثل متوسط نتيجة اختبار الرياضيات بين المدارس)
- المؤشرات (مثل نتيجة إرضاء العميل الخاصة بوكلاء السيارات في المقاطعة)
العثور على تجمعات أعداد النقاط المرتفعة والمنخفضة
بالنسبة لبعض بيانات النقاط، عند تمثيل كل نقطة لحدث ما أو حادثة أو الكشف عن حضور/غياب، لن يُمكن استخدام حقل تحليلي واضح. في هذه الحالات، لا تريد إلا معرفة الأماكن غير المألوفة للتجمع الكثيف أو غير الكثيف (هام إحصائيًا). في هذا التحليل، يتم وضع معالم المنطقة (شبكة تقوم بالأداة بإنشائها لك أو طبقة منطقة توفرها) فوق النقاط، ويتم حساب عدد النقاط التي تقع ضمن كل منطقة. تقوم الأداة بعد ذلك بإيجاد تجمعات أعداد النقاط المرتفعة والمنخفضة المقترنة مع جميع معالم المنطقة.
تحديد الأماكن التي يحتمل وجود النقاط بها
حدد طبقة منطقة أو ارسم مناطق تُعرّف منطقة الدراسة حيث تريد إجراء التحليل في جميع المواقع التي قد تحدث فيها معالم نقاط الحادث. بالنسبة لهذا الخيار، سوف تقوم أداة العثور على النقاط الفعالة بتراكب منطقة الدراسة المحددة مع شبكة الصيد، وتحسب النقاط التي تقع في كل مربع من مربعات شبكة الصيد. عند عدم تحديد نقاط احتمال وقوع الحوادث من خلال هذا الخيار، تقوم أداة العثور على النقاط الفعالة بتحليل مربعات الشبكة التي تحتوي على حساب نقطة واحدة على الأقل. عند استخدام هذا الخيار لتعريف أماكن النقاط المحتملة، يتم إجراء التحليل لجميع مربعات الشبكة التي تقع في المناطق الحدودية التي قمت بتعريفها.
نقاط العدد داخل مناطق التجميع
في بعض الحالات، سوف تكون معالم المنطقة مثل مسارات التعداد، أو مراكز الشرطة، أو قطع الأراضي أكثر منطقية للتحليل عن الشبكة الافتراضية.
اختيار للتقسيم بواسطة
يتوفر طريقتين مشتركة لتحديد النقاط الفعالة والضعيفة:
- بواسطة العدد - عند قيامك بتحليل مجموعة بيانات محددة، سترغب في إيجاد النقاط الفعالة والباردة لعدد المعالم في جميع مناطق التجميع خلال منطقة الدراسة. مثال، يُمكن أن ترغب في إيجاد النقاط الفعالة حيث يحدث أكبر عدد من الجرائم والنقاط الباردة حيث يحدث أقل عدد من الجرائم لتجميع الموارد.
- بواسطة الكثافة - من على الجانب الأخر، تحليل وفهم النقوش التي تندرج في الحساب الذي يوضح عمليات التوزيع التي تؤثر على الظواهر ذات المغزى. تتم الإشارة إلى هذا المفهوم بصفته تسوية أو عملية قسمة قيمة بيانات جدولية رقمية واحدة على قيمة أخرى لتقليل الاختلافات في القيم استنادًا إلى حجم المناطق أو عدد المعالم في جميع المناطق. على سبيل المثال، مع الجريمة، يُمكن أن ترغب في فهم مكان حدوث تجمعات أعداد الجرائم المرتفعة والمنخفضة لحساب السكان الأساسين. في هذه الحالة، يُمكن أن تقوم بعد عدد الجرائم في جميع المناطق (حيث تكون هذه المنطقة إما شبكة أو مجموعة بيانات منطقة مختلفة) وقم بقسمة إجمالي عدد الجرائم الحالي على عدد السكان في هذه المنطقة. يُمكن أن يمنحك هذا معدل الجريمة أو عدد الجرائم في كل منطقة. يُجيب إيجاد النقاط الفعالة والباردة للجرائم في كل منطقة على الأسئلة المختلفة التي يُمكن أن تساعد أيضًا في اتخاذ القرار.
تُعد كل من طريقتين تحليل البيانات في منطقة الدراسة صحيحتان، لكنها تستند فقط إلى السؤال الذي تسأله.
يُعد اختيار بيانات جدولية صحيحة للقسمة هام جدًا. يتعين عليك التأكد من أن تقسيم بواسطة البيانات الجدولية هي البيانات الجدولية التي تؤثر، في حقيقة الأمر، على توزيع الظواهر المحددة التي تقوم بتحليلها.
عند اختيار تقسيم بواسطة Esri Population، يتم استخدام بيانات السكان من Esri التغطية العامة للتوزيع الديموغرافي. تأكد من النظر إلى دقة البيانات المتاحة للمنطقة التي تهتم بها لتتأكد من أنها متطابقة مع حجم المناطق التي يتم إثرائها (إما مناطق التجميع التي يتم توفيرها أو الشبكة التي يتم إنشائها).
تفسير النتائج
تكون المخرجات من أداة العثور على النقاط الفعالة عبارة عن خريطة. فيما يتعلق بالنقاط أو المناطق الموجودة في خريطة الطبقة الناتجة، كلما بدا اللون الأحمر أو الأزرق داكنًا بشكل أكبر، ازدادت ثقتك بأن التجمع ليس نتيجة احتمال عشوائي. لا تكون المناطق والنقاط المعروضة باللون البيج، من جهة أخرى، جزء من أي تجمعات إحصائية، يمكن أن تصبح الأنماط المكانية المقترنة مع هذه المعالم مثل نتيجة الفرصة العشوائية. في بعض الأحيان ستشير نتائج التحليل إلى عدم وجود أي تجمعات إحصائية على الإطلاق. معلومات جديرة بالمعرفة. عندما يكون الجزء المكاني عشوائيًا، لا تتوفر مفاتيح للأسباب الرئيسية. في هذه الحالة، سيصبح لون جميع المعالم في طبقة النتائج بيج. ومع ذلك، عند العثور على تجمعات هامة إحصائيًا، تعد مواقع حدوث التجمعات مفاتيحًا هامة لما قد يقوم بإنشاء التجمع. على سبيل المثال، يمكن أن يؤدي العثور على تجمعات مكانية هامة إحصائيًا للسرطان والمرتبطة بتسممات بيئية محددة إلى سياسات وأحداث مُصممة لحماية الأشخاص. وعلى نفس النحو، يمكن أن يوفر العثور على النقاط الفعالة لسمنة الأطفال في مدارس تقدم برامج رياضية بعد انتهاء اليوم الدراسي تبريرًا قويًا لتشجيع هذه الأنواع من البرامج على نطاق أوسع.
استكشاف الأخطاء وإصلاحها
تستند الطريقة الإحصائية المستخدمة بواسطة أداة العثور على النقاط الفعالة إلى نظرية الاحتمالية، ونتيجة لذلك، تحتاج إلى الحد الأدنى من عدد المعالم للتشغيل بفاعلية. تتطلب هذه الطريقة الإحصائية أيضًا أعداد متنوعة أو قيم حقول التحليل. عند تحليل حوادث الجرائم تبعًا للرقعة السكانية، كمثال، والتي تنتهي بشكل مذهل بنفس عدد الجرائم في كل رقعة، سيتعذر حل هذه الأداة. يوفر الجدول أدناه توضيح للرسائل التي يمكن أن تواجهها عند استخدام أداة العثور على النقاط الفعالة:
رسالة | مشكلة | الحل |
---|---|---|
تتطلب خيارات التحليل التي تم تحديدها حد أدنى 60 نقطة لحساب النقاط الفعالة والباردة. | يتعذر إيجاد معالم نقطية كافية داخل طبقة التحليل النقطية لحساب النتائج الموثوقة. | الحل الواضح هو إضافة المزيد من النقاط إلى طبقة التحليل. عوضًا عن ذلك، يُمكنك تعريفمناطق التحليل المحيطة ، وبعد ذلك تفضل بإضافة المعلومات المتعلقة بأماكن احتمالية ظهور النقاط ولكنها لم تظهر. باستخدام هذه الطريقة ستحتاج إلى 30 نقطة كحد أدنى. يمكن أيضًا القيام بتوفير مناطق التجميع التي تقوم بتراكب النقاط. ستحتاج 30 منطقة مضلع و30 نقطة كحد أدنى داخل هذه المناطق لعملية التحليل. عند الحصول على 30 نقطة على الأقل يمكن أن تقوم بتحديد حقل التحليل. يساعد هذا في تغيير السؤال من أين تتواجد العديد من النقاط أو القليل منها ليصبح أين تتجمع قيم حقل التحليل مكانيًا. |
تتطلب خيارات التحليل التي تم تحديدها حد أدنى 30 نقطة مع البيانات الصحيحة في حقل التحليل لحساب النقاط الفعالة والباردة. | لا توجد نقاط كافية أو نقاط كافية مقترنة مع قيم حقل التحليل خلاف-NULL ، داخل طبقة التحليل لحساب النتائج الموثوقة. | لسوء الحظ، عند الحصول على أقل من 30 نقطة، لن تصبح طريقة التحليل الحالية مناسبة للبيانات. عند الحصول على أكثر من 30 نقطة وكنت ترى هذه الرسالة، يمكن أن يتضمن حقل التحليل الذي تم تحديده قيم NULL. سيتم تخطي النقاط مع قيم حقل التحليل NULL. احتمالية أخرى هي الحصول على تصفية فعالة تقلل عدد النقاط المتاح للتحليل. |
تتطلب خيارات التحليل التي تم تحديدها حد أدنى 30 مضلعًا مع البيانات الصحيحة في حقل التحليل لحساب النقاط الفعالة والباردة. | لا توجد مناطق مضلعات كافية أو معالم منطقة كافية مقترنة مع قيم حقل التحليل خلاف-NULL ، في طبقة التحليل لحساب النتائج الموثوقة. | لسوء الحظ، عند الحصول على أقل من 30 منطقة مضلع، لن تصبح طريقة التحليل الحالية مناسبة للبيانات. عند الحصول على أكثر من 30 منطقة وكنت ترى هذه الرسالة، يمكن أن يتضمن حقل التحليل الذي تم تحديده قيم NULL. سيتم تخطي مناطق المضلع مع قيم حقل التحليل NULL. احتمالية أخرى هي الحصول على تصفية تقلل عدد مناطق المضلعات المتاحة للتحليل. |
يتطلب خيار التحليل الذي تم تحديده حد أدنى 30 نقطة ليتواجد داخل مناطق المضلع المحيطة. | سيتم فقط تحليل النقاط الواقعة داخل مناطق التحليل المحاطة والتي تم رسمها أو توفيرها. لتوفير نتائج موثوقة، ينبغي أن يوجد 30 نقطة على الأقل داخل مناطق التحليل المحيطة. | لسوء الحظ، إذا لم يكن لديك 30 نقطة على الاقل، لن تصبح هذه الأداة مناسبة للبيانات. باستخدام الحد الأدنى لـ 30 معلم، سيكمن الحل هنا في توفير مناطق تحليل محيطة مختلفة وربما أكبر في الغالب. خيار آخر هو توفير طبقة منطقة بها حد أدنى 30 من مضلعات التجميع والتي تتراكب على 30 نقطة على الأقل. عند توفير مناطق التجميع، سيتم القيام بالتحليل على أعداد النقاط داخل كل منطقة. |
يتطلب خيار التحليل الذي تم تحديده 30 نقطة على الأقل لتتواجد داخل مضلعات التجميع. | سيتم فقط تضمين النقاط الواقعة داخل مضلعات التجميع داخل التحليل. لتوفير نتائج موثوقة، ينبغي تواجد 30 نقطة على الأقل داخل مناطق المضلع التي تم توفيرها. | لسوء الحظ، إذا لم يكن لديك 30 نقطة عل الأقل، لن تصبح هذه الطريقة مناسبة للبيانات، وإلا، ينبغي رسم أو توفير مناطق تحليل محيطة تتراكب على 30 نقطة على الأقل. ينبغي أن تقوم المناطق المحيطة بتفعيل جميع المناطق حيث احتمالية حدوث هذه النقاط. |
يتطلب خيار التحليل الذي تم تحديده 30 من مناطق التجميع كحد أدنى. | سوف يقوم الخيار الذي قمت بتحديده بتراكب المناطق أعلى النقاط وعدد النقاط التي تقع داخل كل منطقة. سيتطلب وجود 30 عدد (30 منطقة) لتوفير النتائج الموثوقة كحد أدنى. | يمكن حساب النتائج الموثوقة عند توفير 30 نقطة كحد أدنى واقعة داخل 30 منطقة تجميع كحد أدنى. إذا تعذر إيجاد 30 منطقة تجميع، يمكن محاولة رسم أو توفير مناطق التحليل المحيطة والتي تتراكب على 30 نقطة على الأقل. ينبغي أن تقوم المناطق المحيطة الحالية بتفعيل جميع المناطق حيث احتمالية حدوث هذه النقاط. |
يتعذر حساب النقاط الفعالة والباردة عند تطابق عدد النقاط في جميع مناطق المضلعات. جرب مناطق المضلعات المختلفة أو خيارات التحليل لمختلفة. | عند قيام أداة العثور على نقاط فعالة بحساب عدد النقاط الواقعة داخل منطقة التجميع، يتم اكتشاف أن الأعداد تكون جميعها متطابقة. لحساب النتائج، تتطلب هذه الأداة بعض التنوع في عدد القيم التي تم الحصول عليها على الأقل. | يمكن توفير مناطق تجميع بديلة لن يتم تفعيل نتائجها في جميع المناطق التي لها نفس عدد النقاط. عوضًا عن مناطق التجميع، يمكن أيضًا محاولة رسم مناطق التحليل المحيطة وتوفيرها. بطريقة بديلة، يمكن تحديد حقول التحليل. مع ذلك، يساعد هذا في تغيير السؤال من أين تتواجد العديد من النقاط أو القليل منها ليصبح أين تتجمع قيم حقل التحليل مكانيًا. |
لا يوجد تنوع كافي في مواقع النقاط لحساب النقاط الفعالة والباردة. تقلل النقاط المتزامنة، مثال، التنوع المكاني. يمكن أن تقوم بتوفير المناطق المحيطة ومناطق التجميع (كحد أدنى 30) أو حقول التحليل. | استنادًا إلى عدد النقاط وكيفية توزيعها، تقوم الأداة بإنشاء شبكة صيد لتراكب النقاط. بعد حساب عدد النقاط الواقعة داخل كل مربع لشبكة الصيد وإزالة المربعات التي عددها يكون صفر، يتبقى أقل من 30 مربع. تتطلب هذه الأداة وجود 30 عدد (30 مربع) كحد أدنى لتوفير النتائج الموثوقة. | إذا شغلت النقاط مواقع فريدة قليلة جدًا (إذا وجد العديد من النقاط المتزامنة)، سيشير الحل الأفضل إما لتوفير مناطق التجميع التي تقوم بتراكب النقاط أو رسم مناطق التحليل المحيطة وتوفيرها إلى مكان تواجد هذه النقاط وتكون غير ممكنة. خيار آخر هو لتحديد حقول التحليل. مع ذلك، يساعد هذا في تغيير السؤال من أين تتواجد العديد من النقاط أو القليل منها ليصبح أين تتجمع قيم حقل التحليل مكانيًا. |
لا يعد هذا تنوع كافي خلال النقاط داخل مناطق المضلعات. يمكن محاولة توفير الحدود الأكبر. | استنادًا إلى المواقع النقطية وعدد النقاط، تقوم الأداة بإنشاء الشبكة لتراكب النقاط. بعد حساب عدد النقاط الواقعة داخل كل مربع لشبكة الصيد وإزالة المربعات التي تتواجد خارج مناطق التحليل المحيطة، سيتبقى أقل من 30 مربع في شبكة الصيد. تتطلب هذه الأداة وجود 30 عدد (30 مربع) كحد أدنى لتوفير النتائج الموثوقة. | عند تواجد النقاط في مواقع متنوعة داخل مناطق التحليل المحيطة، يمكن أن ترغب فقط في إنشاء حدود أكبر أو توفيرها. إذا شغلت النقاط مواقع فريدة قليلة جدًا (إذا وجد العديد من النقاط المتزامنة)، سيكون الحل الأفضل هو توفير مناطق التجميع التي تتراكب مع النقاط. خيار آخر هو لتحديد حقول التحليل. مع ذلك، يساعد هذا في تغيير السؤال من أين تتواجد العديد من النقاط أو القليل منها ليصبح أين تتجمع قيم حقل التحليل مكانيًا. |
تكون جميع قيم حقول التحليل واحدة. يتعذر حساب النقاط الفعالة والباردة إذا تعذر إيجاد تنوع في الحقل المراد تحليله. | العديد من النقاط التي يتم تحديدها في حقل التحليل لها نفس القيمة لجميع النقاط أو المعالم في طبقة التحليل. يتعذر حل هذه الإحصائيات المستخدمة من قبل هذه الأداة ما لم تتواجد قيمة متنوعة للعمل معها. | يمكن تحديد حقل تحليل أو معالم نقطية مختلفة أو تحليل كثافات نقطية عوضًا عن القيم النقطية. |
سيتعذر حساب النقاط الفعالة والباردة للبيانات التي تم توفيرها. غذا كانت مناسبة، حاول تحديد حقل التحليل. | عند إنشاء الأداة لشبكة الصيد وكذلك حساب عدد النقاط داخل كل مربعة، ستصبح أعداد جميع المربعات متطابقة. | سيكون الحل هو توفير مناطق التجميعأو رسم مناطق التحليل المحيطة أو توفيرهاأو تحديد حقول التحليل. |
ينبغي أن تكون حجم الخلية أقل من نطاق المسافة. | لقد قمت بتوفير قيمة نطاق المسافة التي تكون أصغر من حجم كل خلية من خلايا الشبكة. | تحقق من الوحدات المحددة لكلا نطاق المسافة و حجم الخلية، واستخدم القيمة الافتراضية المحتسبة بواسطة الأداة، أو استخدم القيمة التي تكون أكبر من حجم خلية شبكة واحدة. |
يتوفر مزيد من المعلومات حول الخوارزمية المستخدمة بواسطة أداة العثور على نقاط فعالة في كيفية عمل تحليل النقاط الفعالة الأمثل.
أدوات مشابهة
استخدم أداة العثور على النقاط الفعالة لتحديد ما إذا يتوفر أي تجمع إحصائي هام في الأنماط المكانية للبيانات. تكون الأدوات الأخرى التي قد تكون مفيدة أدناه:
أدوات تحليل عارض الخريطة
إذا كنت مهتمًا بالعثور على القيم الخارجية في النمط المكاني للبيانات، استخدم أداة العثور على القيم الخارجية.
إذا كنت مهتمًا بإنشاء خريطة كثافة لمعالم النقاط أو الخطوط، استخدم أداة احتساب الكثافة.
ArcGIS Desktop أدوات التحليل
تقوم أداةالعثور على النقاط الفعالة بتنفيذ إحصائية مشابهة على أدوات تحليل النقاط الفعالة (Getis-Ord Gi*) و تحليل النقاط الفعالة الأمثل.
العثور على النقاط الفعالة تتوفر أيضًا في ArcGIS Pro. لتنفيذ الأداة من ArcGIS Pro, يجب أن تقوم البوابة الإلكترونية النشطة للمشروع بتشغيل Portal for ArcGIS 10.5 أو الإصدار الأحدث. يجب عليك أيضًا تسجيل الدخول على البوابة الإلكترونية باستخدام حساب لديه امتيازات لإجراء تحليل معلم قياسي في البوابة الإلكترونية.