Skip To Content

Klasyfikuj obiekty metodą Deep Learning (Map Viewer)

Dostępne na serwerze Image Server

Narzędzie Klasyfikuj obiekty metodą Deep Learning uruchamia na warstwie zobrazowań model Deep Learning w celu wygenerowania warstwy obiektowej lub tabeli, w której są sklasyfikowane poszczególne obiekty wejściowe.

Danymi wynikowymi jest hostowana warstwa obiektowa.

Przykłady

Za pomocą narzędzia Klasyfikuj obiekty metodą Deep Learning można ocenić uszkodzone budynki po klęsce żywiołowej. Mając warstwę obiektową obrysów budynków i warstwę zobrazowań przedstawiającą uszkodzone obszary, narzędzie może wskazać, czy istniejące budynki zostały uszkodzone.

Za pomocą narzędzia Klasyfikuj obiekty metodą Deep Learning można wskazać stan koron istniejących drzew. Mając warstwę obiektową koron drzew i warstwę zobrazowań przedstawiającą aktualne korony drzew, narzędzie może wskazać, czy kondycja istniejących drzew jest dobra.

Uwagi dotyczące korzystania

Narzędzie Klasyfikuj obiekty metodą Deep Learning zawiera konfiguracje wejściowych warstw zobrazowań, wejściowych warstw obiektowych, modelu Deep Learning i warstwy wynikowej.

Warstwy wejściowe

Grupa Warstwy wejściowe zawiera następujące parametry:

  • Wejściowa warstwa zobrazowań lub warstwa obiektowa służy do wybrania warstwy zobrazowań lub warstw służących do klasyfikowania obiektów. Wybrana warstwa zobrazowań powinna opierać się na wymaganiach modelu Deep Learning, który zostanie użyty do klasyfikowania obiektów. Warstwa zobrazowań może być wielowymiarowa lub może być zbiorem obrazów.
  • Wejściowa warstwa obiektowa służy do wybrania obiektów wskazujących pozycje do sklasyfikowania. Każdy wiersz w wejściowej warstwie obiektowej reprezentuje jeden obiekt. Jeśli nie podano wejściowej warstwy obiektowej, zostaje przyjęte założenie, że każdy obraz wejściowy zawiera jeden obiekt do sklasyfikowania.
  • Tryb przetwarzania określa sposób przetwarzania elementów rastrowych w warstwie zobrazowań. Parametr Tryb przetwarzania zawiera następujące opcje:
    • Przetwarzaj jako obraz mozaikowy — wszystkie elementy rastrowe w zestawie danych mozaiki lub usłudze rastrowej zostaną połączone w mozaikę i przetworzone. Jest to opcja domyślna.
    • Przetwarzaj wszystkie elementy rastrowe osobno — wszystkie elementy rastrowe w zestawie danych mozaiki lub usłudze rastrowej zostaną przetworzone jako osobne obrazy.

Ustawienia modelu

Grupa Ustawienia modelu zawiera następujące parametry:

  • Model do klasyfikacji obiektów określa model Deep Learning służący do sklasyfikowania obiektów. Model Deep Learning, aby można go było wybrać w narzędziu, musi znajdować się w usłudze ArcGIS Online. Można wybrać własny model dostępny publicznie w usłudze ArcGIS Online lub z ArcGIS Living Atlas of the World.
  • Parametr Argumenty modelu określa argumenty funkcji zdefiniowane w klasie funkcji rastrowej Python. Wymienione są dodatkowe parametry Deep Learning i argumenty do eksperymentów i udoskonaleń, takie jak próg ufności używany podczas dostosowywania czułości. Nazwy argumentów są uzupełniane z modułu Python.
  • Nazwa pola etykiety klasy wynikowej określa nazwę pola, które będzie zawierać etykietę klasyfikacji w wynikowej hostowanej warstwie obiektowej lub tabeli.

Warstwa wynikowa

Grupa Warstwa wynikowa zawiera następujące parametry:

  • Nazwa danych wynikowych określa nazwę warstwy, która zostanie utworzona i dodana do mapy. Nazwa musi być unikalna. Jeśli w instytucji istnieje już warstwa o tej samej nazwie, działanie narzędzia zakończy się niepowodzeniem i wyświetlona zostanie prośba o wybór innej nazwy.
  • Opcja Zapisz w folderze określa nazwę folderu na stronie Moje zasoby, w którym zostaną zapisane dane wynikowe.

Środowiska

Ustawienia środowiskowe dotyczące analiz to dodatkowe parametry wpływające na wyniki działania narzędzia. Dostęp do ustawień środowiskowych narzędzia dotyczących analiz można uzyskać z poziomu grupy parametrów Ustawienia środowiskowe.

Narzędzie to obsługuje następujące środowiska analiz:

Dane wynikowe

To narzędzie udostępnia następujące dane wynikowe:

  • Hostowana warstwa obiektowa z obiektami oznaczonymi etykietami na podstawie klasyfikacji określonej przez model Deep Learning.
  • Tabela z lokalizacjami oznaczonymi etykietami na podstawie klasyfikacji określonej przez model Deep Learning.

Wymagania dotyczące licencjonowania

To narzędzie wymaga następujących licencji i konfiguracji:

Zasoby

Aby dowiedzieć się więcej, skorzystaj z następujących zasobów: